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In this paper the solution is given for the problem of equilibrium of a thick plate when 
the plane faces are unloaded and tractions are specified on the cylindrical part of the 

boundary, the tractions being symmetric with respect to the middle plane. The behavior 
of the solution is studied for small values of the thickness parameter of the plate A_, 

Jt is shown that the state of stress within the plate is described by a certain biharmonic 
function for which the boundary conditions coincide with the Kolosov-Muskhelishvili 

conditions only to the first approximation. On the boundary the additional state of stress 
contains terms of the same order in .\. as the solution Uf the two-dimensional problem 
!‘ltat is, the two-dimensional problem does not give tne true state of sfre3c on rbe I?c!:rnd- 

ary even for a plate of vzrv small thic,i$!>ess. 

1, We shall examine a plate of thickness 2 i? made of an isotropic, homogeneous mate- 

rial, The boundary of the body is formed by two plane regions rl and the cylindrical 
surface rz (Fig. 1). The plane faces are considered to 
be free of load. This assumption is not vital, inasmuch 

as these tractions can always be removed by solution 

of the corresponding problem for an infinite layer 

(see, e, g. , Lur’e [I and 21. We shall study the case in 
which the cylindrical part of the plate boundary is 

loaded by a self equilibrating system of tractions which 
are symmetrical with respect to the middle surface. 
This, along with the results of Aksentian and Vorovich 
133, allows us to obtain the strain distribution in a plate 

Fig. 1 
in the general case. 

We shall proceed from the three-dimensional Navier 
equations. It can be proved that in this case the state 

of stress in the plate is composed of three states, which are called states of biharmonic. 
potential, and curl type p]. Using the results of [I], we obtain the state of stress of bi- 
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where a is a characteristic linear plan dimension of the plate, 6 is a dimensionless CO- 

ordinate, B is Poisson’s ratio, and cp (z) and !? (z) are analytic functions of the complex 

variable z = x + t& 
The state of stress of potential type can b-. p found comparatively simply by seeking it 

in the form 

U(2) = a (5) g , $a = a(G) -$& , w(2) = sp (5) A 

After substitution of these expressions into the system of Navier equations, we may 

separate variables if A satisfies me relation 

$A / 8x2 + d2A / dy= - b2A / h2 = 0 (1.3) 

From the same procedure we find the function U( 6 ) and @( 6 ) up to multiplicative 

constants. From the condition of homogeneity, i. e. , from the fact that the plane faces 

are unloaded, we obtain the equation. for the determination of the constant 6 
26 + sin 26 = 0 (1.4) 

This has a countable set of complex roots, and to each root hR there corresponds a 

function AR from (1.3). 
Introducing the dimensionless coordinates 5 and ‘?‘j. we can represent tile SO~UtiOII Of 

potential type in the form 



254 I. I. Vorovich and 0. S. hqalkina 

pk (5) = 6, sin dk cos 13~5 

rk (5) = dk (cos dk sin 6,1; - 5 sin ak ~0s B&) 

Sk (s) = 6k2 [(y + cos dk cos SJ + 5 sin hk sin S,&] ) 
The summation is carried out over the roots ek, having positive real part, since the 

roots with negative real part provide the same solution, in view of the fact that 6, 
occurs as a square in Eq, (1.3). 

We seek the state of stress of curl type in the form 

20) = a (5) w/ay, ~(9) = - a (c)bF / dx, 

Arguing as before, we find 

w(S) s 0 

The functions Fp satisfy the same relations as the d, 

d’&, 1 aEa + aaFP f d?j’ - pP”Fp 1 h2 = 0, Qp = PZ (p=l, 2, 3, .) 

These solutions were obtained in a different way in I?]. 

2, The problem of determination of the state of stress in a plate which has been 
formulated will be solved if the boundary conditions for the functions cp (z), 9 (z), Ak, 

FP are determined in accordance with the tractions specified on ra In order to do 

this we shall use the principle of virtual work. We introduce a system of local dimen- 

sionless coordinates [3 ] related to the contour of the plate in plan, S, 77, < (Fig. 2). 

We shall consider that at each point of the sviface & 

the system of tractions N( c, s). r( 6. s). ac . 9 or 

the system x,o (5, S), Lo (5, 4, %I0 (59 s>t* is 
specified. These two systems are, of course, each=ex - 

pressible in terms of the other. The displacement com- 
ponents in the system of axes ?‘L , S are u, and u,. We 
shall seek the state of deformation of the plate in the, 

Fig. 2. form u = ~(1) + ~(2) + u(3), 72 = D(l) + 2;(2) + 

+ 2& w = w(l) + w(2) f z@ (2.1) 

Then considering that the stresses of (2.1) are exact solutions of the Navier equations 

of t$e theory of elasticity, the virtual work equation may be taken in the form [41 

Jj [(XJO + X,(2) + X,(W)&&) + (Y,(l) + Y,(B) + Y,(3)) 6V(‘) + 

+ ‘,;$lJ + Z,(S) + Zn(3))&& + X,(l)6 (u(Z) + u(3)) + Y,M (V(2) + 
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+ VW) + zps (w(2) + w(S)) + (a,(2) + up) 6 (up + un’3’) + (2,,‘2’ + 
+ ~,,,(3))6 (us’3’ + u,(a)) + (~~~‘2’ + r,,(s))6 (w(2) + w(s)) Jdu = ki Uno6u + 

+- Y,,O6v + Z,"GwJdu (2.2) 

In order to use this equation, it is necessary to transform to stresses and displacements 

in the local coordinates n and S. We obtain 

Pk (3) 4 + h j$ % (3) 3 + 
k=l 

(2.3) 

WC’) + td3) = 2 pk (5) d, H--l++-) 0.4) 
k=l 

where R is the radius of curvature of the contour of the plate in plan. 
In accordance with the well-known formulas, we can obtain from these equations 

X, = a,1 - z,m, Y, = u,m + z,l, 2, = z,,, 
are direction cosines, 

where A? and 7T.r 

The displacements u(a), n(s), ~(3) and v(a),.which occur in Eq. (2.2) can be written 

in local coordinates by using the expressions 

u=u,l-UJn. v’ = u,m $ u,l 
For the solution of biharmonic type, we have (2.5) 

We write the values of the tractions X,(l) and Y,(l) on the boundary in the form 

X,,(r) = &(cp. 4) + h232%z (cp), YP = 81, (9, @) + ha3*J&, (q~) (2.6) 
Here Rlx, &, RI,, and RW are operators the meaning of which becomes clear 

from examination of Eq. (2.5). 

We introduce further the operators Slk and ~!?a,, which are defined as follows: let 
ak (s) be the boundary values of the function A, ‘(a, n), .which satisfies (1.3). Then 

(2-7) 
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u,@) = 2vh 5 cos pp&” z&(S) = 2v ; co9 p,s (hZfp, + rnSl,f,) 
p=1 ?J=l 
00 

z&(3) = - 2v 2 cos P,5&,fp9 Y(S) =2v 5 cos pp~(Smfp’-zSl*fp) 
p=1 

&9 E 0 
p=1 

In order to make use of the variational relation (2.2). the variations in the solution of 
biharmonic type must be expressed in terms of any two independent ones. The state of 

stress of biharmonic type is described by the fuctions Cp(Z) and Y (z) and would be com- 

pletely determined if the displacements U and U corresponding to the given solution of 

this type were known on the contour. It is, therefore natural to express the variations of 

al1 quantities related to this solution in terms of the variations 6Uand 6V on the contour. 
For .6wW for instance, we have 

6W(‘) = Ch (K&(t) + K&z;(t)) (2.11) 
where Kl and & are certain integro-differential operators defined by the two-dimension- 
al problem of the theory of elasticity in terms of displacements. As other independent 

variations we shall take the variations of the boundary values of A, and FP. 
Varying only the boundary value of U , we obtain from Eq, (2.2) 

= 2 (X,“) + 2 hKl* (&,“> (2.12) 

Here and in what follows angle brackets denote mean values of quantities. Varying 

V on the boundary, we find the analogous relations 

where = 2 (Y,“) -j- 2 AK,+ (Z,o) (2.13) 

fv - ‘) f Pk (5) dG = - 6k2Jklr 
-1 -1 

1 

s uk (5) d5 = Jkl, 
-1 

i ms pp5 4 = 0, ‘12 { X,,“dS = (X,,“), ‘/* f Y,“d&? = ( Y,,“) 
-1 -1 -1 
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Here & *. and &* tire the operators which are adjoint to I!& and &$ We recall that 
an operator Ki is, related to its adjoint Ki + by the following identity valid for any funct- 

ions fi (s ) and fz (S ) a~ the contour 

$ fl (Wifi CsJds = 
f 

fS CsWi*fl (S) Qh 

Varying the boundary value of AH, we obtain the infinite system 

+ i PpJPmgfpr] = ~28m -L&q&Z, @=1,2,3,...) (2.14) 
p-t 

where S&, is adjoint to the operator S,, and 
‘f 1 1 

s Pa,,, (5) 4 = Jti, s pk (8 a, (f) dL= Jrmr s Nam Vi) d5 z= NW, 
-1 -1 --1 

1 1 

s 
ak(5)a,f6)d5= 3kma, S a, fS> ~0s p,S G = Jpm: t ( ya, (5) & = TmF 

-1 -2 --I 

I. 1 

f 
~k(~)&‘(&& =Jk=h s 

~m~~~~~~~~~d~ =Jpm~, f zP,(E;JdL ='m 

-1 -1 -1 

Finally, by varying the boundary value of the function Fp, we have 
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where 

Thus a compiete system of equations has beer; obtained which determines the solution 

of the problem in its entirety, Eq, (2.15) serves to determine the ft for t= 1.2, 3,. . . . 

All the a,,are found from the system (2.14). Finally, Eqs. (2.12) and (2.13) provide the 
boundary conditfons for the functions ~(2) and Y(zJ. If, however. the function f,, and 
a& are eliminated from (2.12) and (2.13) with the aid of (‘2.15) and (2.14). then Wedir- 
Ectly obtain the boundary conditions for the functions 3 and 3 ot the solution of bihar- 
mohic type. 

3* The construction of the operators S,, and ,S, can be carried out effactiveiy for 
small values of the parameter x by using asymptotic expansions of the functions A* 
and pP, having the following form 

(3.4) 

1 
+2q E 

2aR 
-$ak”+Tak’-a 

2?P + RR” + aa 
2R3 a,)]+. . *}*& 

Analogous representations can also be written out for FP (S, I%)- As a point moves 
into the interior of the region (as n-+- “). the solution decays exponentially. The op- 
erators 8~ and s a introduced earlier are then given by the relations 

The corresponding adjoint operator is 

We shall seek the solution in the form 
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assuming that the tractions specified on the contour are also representable ir? series form 

c31 
N==WV, +h2N, -I-..., T=hT, +h2T, -f- . . . . 2==422,+_ 

X,” = Ax,,* + A2X,,o + . . . . Y,” = aY$ Jr h2Yn,o q- .,.) 2,” = h2.z,ia 

Using these expansions, we now collect terms having the same power of A in Eqs. 

(2.12) to (2.15), For all the functions which have been introduced, we thus obtain the 
boundary data for each approximation in powers of x separately. For the lowest power 

of A, i e. , in the zeroth appraximation 
(3.6) 

+ 2 [(v - l%a~k,,ak, -t”~n~kmB~k*~k0 + v~krns~kaksl = o (3.8) 
k=l 

++sfto = 0 c3-9) 

It is immediately apparent from this that fto = 0. The system (3. 8) is such that 

a kO = 0. Then we obtain from (3.6) and (3.7) that ‘p,, = $, = 0. 
For the next higher power of h , we have in the first approximation (3.10> 

2& (ql, *I) - % ; J&d, (+ m&l - hi) + v 4 
02 

-&’ 2 &d&l = (ho> 

% i iv -“=;a J 

k=l 
(3.11) 

‘i m km@M ~~~Jk~~~k’u~ + ~~km~,&i~k~l = 0 (3.12) 
k=l 

2P 
y- yA2ft1 = 0 (3.13) 

It is clear from this that fn = aK1 = 0. From (3.10) and (3.11) we obtain the 

boundary conditions for q+ (z) and +I (z): 

& (cpl ,t 2%’ + $4 = i K&J + i CL&) (3.14) 

which coincides exactly with the Kolosov-~u~belishvi~ boundary condition for cp (zf 

and 9 (z) in the two-dimensional theory of elasticity. 
In the second approximation we obtain 

-& (qpx -f z(p2’ + $2) = i (<XTL,“> + i PA + (3.f5j. 
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fn this approximation 

faa= - $3 
The matrix of the infinite system of Eqs. (3.16) depends neither on the load nor on the 

region occupied by the plate, but is affected only by Poisson’s ratio, The form of the 

matrix is the same as in the case of bending of a plate: the difference consists in the 

values of the numbers &. The system can be solved well by the method of truncation. 

The same constructions are carried out for the third and higher approximations. At each 

stage of approximation it is necessary to solve a ho-dimensional Kolo~v-M~khelishvili 
problem for the given region but for a different right-hand side. MoreOver, the uk_ 

must be determined from an infinite system of equations having the same matrix for all 
the approximations. 

4, Thus, we have for the boundary values of the functions which have been intro- 

duced cp (z) = ho, + h2qJ2 + *a., 9 (z) = & + ha% +.*. 

a, (s) = h%.Q2 + **., f, (a) = Wps +*.. (4.0 

From this we finally obtain the following expressions for the stresses and displacements 
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As we move towards the interior of the region, the state of stress tends to one of bi- 

harmonic type, but to one which is not described by the boundary conditions of the two- 

dimensional state of stress. This latter is obtained as the first term in the expansion in 

powers of h. St. Venant’s principle as usually stated is not satisfied, since even far from 
the boundary the state of stress does not coincide with the two-dimensional one. 

In Eqs. (4.5) for the displacements the first terms on the right-hand side correspond 

to the solution of the two-dimensional problem of the theory of elasticity. It follows 

from this that the error in the determination of the displacements in the two-dimensional 
problem will be of order i compared with unity. 

Let us examine the values of the stresses on the boundary n= 0 

I( ‘l’ - I) Pk (5) + 6k2sk (c)l ak2 (5) - 
k=l 

i2 d 
-2ds [li(cp2 -62 + -@2'-i(p2 + $2 - $2) + n tcp2 -62 + Zcp2’ + G2’ + 

+ $2 + $a)] h=o + 4 A2 {zv ; &I CO.5 &‘%2 + ,17i [b - I> Pk (5, + 
p=1 

+6k2ak (c)l dk3 6) - cy - I) + jl dkPk t&j ak2 @I} f- . a . (4.6) 

+ z&’ + ijl + q~~)][~~ - 4 hv 5 cos ppCpp2fp2 ‘sj + $ $ [mi (W - cP2 -I- 
p=1 

+ z(p2'- icpa'+;j;2-$2)--(('P, $2 +-&2' +zcp2'+32 +~2)lln=cl+ 

+ s A2 { i 6kak (t) . (4.7) 
k=l 

ak2 + v ; cos &,c [ -+- (I + &J> fP2 - Pp2fp3]} + - * 
p=1 

Near the edge additional terms appear in Eqs. (4.6) and (4.7) which are of the same 

order in h as the solution of the two-dimensional problem. In the stress z,, for small 
i the additional terms play the basic role (cf. (33 ). Therefore, as in plate bending, the 

estimation of the state of stress on ‘the boundary from the engineering theory must be app- 
roached carefully. The problem of stress concentration should be examined separately. 

A numerical investigation of the state of stress in plates has been performed in a num- 
ber of cases on the basis of the theory presented here. Although’ numerical data were 
provided for 50 boundary layers, rhe accuracy necessary for practical purposes was attain- 
ed when 10 boundary layers were used. 
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